Page 8 - Demo
P. 8
%u5b66%u7fd2%u6559%u6750%u30b5%u30fc%u30d3%u30b9%u306e%u7279%u9577DTP%u7d44%u7248%u30b5%u30fc%u30d3%u30b9%u56f3 %u7248%u30a4%u30e9%u30b9%u30c8%u30fb%u30c8%u30ec%u30fc%u30b9%u7d44 %u7248%u6559%u6750DTP%u7d44%u7248%u3084%u3063%u2777%u96e8%u304c%u3075%u3063%u3066%u3044%u308b%u3002%u3069%u3093%u306a%u3075%u3046%u306b %u3057%u3068%u3057%u3068 %u306e%u308d%u306e%u308d%uff08%u4f8b%uff09%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2 =-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2 =-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2=-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2 =-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2=-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30fb 4 %u30fb%u25c0C C 1 2 , %u304c l %u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%u3068%u304d%uff0cC C 1 2 , %u306e%u4e2d%u5fc3%u306f l%u306b%u95a2%u3057%u3066%u5bfe%u79f0%u3067%u3042%u308b%uff61 %u307e%u305f%uff0cl9m %u3067%uff0cC1%u306e%u4e2d%u5fc3 A %u306f m%u4e0a%u306b%u3042%u308b%u304b%u3089%uff0cC2%u306e%u4e2d%u5fc3%u3082m %u4e0a%u306b%u3042%u308b%uff61%u25c0%u4e2d%u5fc3 (a%uff0cb)%uff0c%u534a%u5f84 r %u306e%u5186%u306e%u65b9%u7a0b%u5f0f%u306f( ) x a ( ) y b r - +2 2 - = 21 a%uff0cb %u306f%u920d%u89d2 , 2 2 1 1 1 1 r a r r d n b r %u3067%u3042%u308b%u304b%u3089%uff0ccos s a b 1 2 0 0 , in%u3088%u3063%u3066%uff0ccos s 1 1 in 3332 6 2a a =- - =- -d n =-sin c 1 1 os 3132 2 2 2b b = - = -d n - =%u3057%u305f%u304c%u3063%u3066%uff0ccos c ( ) a b + = osa b cos s - ina b sin36313332 2 = -d n$ $ d- -n9692 6 = - = 96 -%u25c0%u89d2%u306e%u7bc4%u56f2%u3068%u7b26%u53f7%u306e%u95a2%u4fc2%u306b%u6ce8%u610f%uff61%u25c0sin cos 1 2 2 i i + =%u25c0%u52a0%u6cd5%u5b9a%u74062 %u6570%u5217 1 2$$ ,34,56, , gg 19$20, gg%u306e%u7b2c n %u9805%u306f%uff0c(2 1 n n - )$2 %u3067%u3042%u308a%uff0c19$20 %u306f%u7b2c 10 %u9805%u3067%u3042%u308b%uff61%u3057%u305f%u304c%u3063%u3066%uff0c1 2$ $ +++ 3 4 5 6$ $ gg+19 20( ) 2 1 k k2 k 110= - $ =!( ) 4 2 k k k2110= - =!4 10 11 21 2 10 6121 = - $ $ $ $ $ $ $11= - 1540 110= 1430%u25c0 k n( ) n 21 1 kn1= + =!k n( ) n n ( ) 61 1 2 1 kn 21= + + =!3 g y %uff1a =- 3 x %u306b%u5782%u76f4%u306a%u76f4%u7dda%u306e%u65b9%u7a0b%u5f0f%u306fy x k 31 = + (k %u306f%u5b9a%u6570)%u3059%u306a%u308f%u3061 xyk - + 3 3 =0 %u2026%u2026%u2460%u3068%u304a%u3051%u308b%u3002%u76f4%u7dda%u2460%u304c%u5186C1%u3068%u63a5%u3059%u308b%u3068%u304d%uff0c%u4e2d%u5fc3(t t , 3 )%u3068%u2460%u306e%u8ddd%u96e2%u306f%u534a%u5f843 t%u306b%u7b49%u3057%u3044%u304b%u3089%u25c02 %u76f4%u7dda y m = +1 1 x n %uff0cy m = +2 2 x n %u304c%u5782%u76f4,m m1 2=-1yxlg%u2460Os(t t , 3 )(0 -, 2s)C2C13 t2 32 3( , 2 2 3 )C1C2QM ( , 0 4 - 3 )PM%u30dd%u30a4%u30f3%u30c8%u6a21%u7bc4%u89e3%u7b54 %u516c%u5f0f%u5229%u7528%u30fb%u5fdc%u7528%u529b/%u4e09%u89d2%u95a2%u6570%u30c7%u30b6%u30a4%u30f3%u8868%u7d19%u30fb%u8a8c%u9762%u30d5%u30a9%u30fc%u30de%u30c3%u30c8DTP Design Illustration%u5f0a%u793e%u306eDTP%u7d44%u7248%u30b5%u30fc%u30d3%u30b9%u306f%u3001%u5b66%u7fd2%u6559%u6750%u5236%u4f5c%u304b%u3089%u30b9%u30bf%u30fc%u30c8%u3057%u307e%u3057%u305f%u30022000%u5e74%uff16%u6708%u306bDTP%u306e%u30aa%u30d5%u30b7%u30e7%u30a2%u62e0%u70b9%u3092%u7acb%u3061%u4e0a%u3052%u3001%u73fe%u5728%u307e%u306720%u4f59%u5e74%u306b%u308f%u305f%u308a%u3001%u6559%u79d1%u66f8%u6559%u6750%u3001%u5b66%u7fd2%u587e%u6559%u6750%u3001%u5b66%u7fd2%u53c2%u8003%u66f8%u3001%u554f%u984c%u96c6%u3001%u5b66%u529b%u30c6%u30b9%u30c8%u3001%u8f9e%u5178%u306a%u3069%u305f%u304f%u3055%u3093%u306e%u6559%u6750%u3092%u624b%u304c%u3051%u3001%u73fe%u5728%u3082%u30b3%u30f3%u30b9%u30bf%u30f3%u30c8%u306b%u5e74%u9593%u7d0412,000%u30da%u30fc%u30b8%u3092%u5236%u4f5c%u3057%u3066%u3044%u307e%u3059%u3002%u4e00%u822c%u8a8c%u3068%u306f%u7570%u306a%u308a%u3001%u6559%u6750%u72ec%u7279%u306e%u7d44%u7248%u30ce%u30a6%u30cf%u30a6%u3001%u6307%u5b9a%u7406%u89e3%u304c%u5fc5%u8981%u3067%u3059%u3002%u719f%u7df4%u30aa%u30da%u30ec%u30fc%u30bf%u30fc%u304c%u4f5c%u696d%u3092%u884c%u3044%u307e%u3059%u3002%u5b66%u7fd2%u8005%u304c%u300c%u898b%u3084%u3059%u304f%u8aad%u307f%u3084%u3059%u3044%u300d%u305d%u3057%u3066%u300c%u5b66%u7fd2%u52b9%u679c%u304c%u611f%u3058%u3089%u308c%u308b%u300d%u8a8c%u9762%u30c7%u30b6%u30a4%u30f3%u3092%u884c%u3044%u307e%u3059%u3002%u5730%u56f3%u3084%u6570%u5b66%u306a%u3069%u306e%u5c02%u9580%u56f3%u7248%u304b%u3089%u56fd%u8a9e%u306e%u633f%u7d75%u30a4%u30e9%u30b9%u30c8%u307e%u3067%u3001%u3054%u5e0c%u671b%u306e%u30bf%u30c3%u30c1%u3067%u5bfe%u5fdc%u81f4%u3057%u307e%u3059%u3002%u5e38%u6642%uff17%uff10%u540d%u306e%u30aa%u30da%u30ec%u30fc%u30bf%u30fc%u304c%u7a3c%u50cd%u3057%u3066%u3044%u308b%u306e%u3067%u3001%u6559%u6750%u5236%u4f5c%u306e%u7e41%u5fd9%u671f%u3067%u3082%u3054%u5e0c%u671b%u7d0d%u671f%u3067%u30da%u30fc%u30b8%u7d44%u7248%u3084%u56f3%u7248%u5236%u4f5c%u306e%u91cf%u7523%u304c%u53ef%u80fd%u3067%u3059%u3002%u5148%u7956%u8fd4%u308a%u3084%u4fee%u6b63%u6f0f%u308c%u3001%u8d64%u5b57%u4ee5%u5916%u306e%u5909%u5316%u306a%u3069%u3092%u9632%u6b62%u3059%u308b%u305f%u3081%u306b%u3001%u6a19%u6e96%u5316%u3055%u308c%u305f%u30d5%u30ed%u30fc%u3068%u30c7%u30b8%u30bf%u30eb%u691c%u7248%u306a%u3069%u3067%u54c1%u8cea%u3092%u7ba1%u7406%u3057%u3066%u3044%u307e%u3059%u3002%u6559%u6750%u306b%u7cbe%u901a%u3057%u305f%u719f%u7df4%u30aa%u30da%u30ec%u30fc%u30bf%u30fc%u304c%u591a%u6570%u5728%u7c4d%u3057%u3001%u4f5c%u696d%u304c%u30b9%u30e0%u30fc%u30ba%u3067%u3059%u3002%u5165%u7a3f%u301c%u7d0d%u54c1%u307e%u3067%u3001%u5e73%u57478,000%u9801%u3092%u7d04%uff12%u30f6%u6708%u9593%u3067%u4ed5%u4e0a%u3052%u3066%u304a%u308a%u307e%u3059%u3002%u9ad8%u7b49%u6570%u5b66%u306e%u6570%u5f0f%u306f%u3001%u9ad8%u5ea6%u306a%u7d44%u7248%u6280%u8853%u304c%u5fc5%u8981%u3067%u3059%u3002%u30d7%u30e9%u30b0%u30a4%u30f3%u3092%u4f7f%u308f%u305a%u4ed5%u4e0a%u3052%u308b%u6280%u8853%u3067%u3001%u67d4%u8edf%u306a%u8abf%u6574%u3084%u4fee%u6b63%u304c%u53ef%u80fd%u3068%u306a%u3063%u3066%u3044%u307e%u3059%u3002%u5727%u5012%u7684%u306a%u5236%u4f5c%u30b9%u30d4%u30fc%u30c9%u7e41%u5fd9%u671f%u3067%u3082%u91cf%u7523%u304c%u53ef%u80fd%u30df%u30b9%u3092%u9632%u6b62%u3059%u308b%u54c1%u8cea%u7ba1%u7406%u67d4%u8edf%u306b%u8abf%u6574%u53ef%u80fd%u306a%u6570%u5f0f%u7d44%u72481 2 3 4featuresfeaturesfeaturesfeaturese-%u30e9%u30fc%u30cb%u30f3%u30b0%u7528%u306e%u90e8%u6750%u3092%u5207%u308a%u51fa%u3057%u3001%u52a0%u5de5%u30fb%u4f5c%u6210%u7d19%u6559%u6750%u306e%u7d44%u7248%u30c7%u30fc%u30bf%u304b%u3089%u3001e-%u30e9%u30fc%u30cb%u30f3%u30b0%u3067%u4f7f%u7528%u3059%u308b%u8a2d%u554f%u3084%u753b%u50cf%u3092%u5207%u308a%u51fa%u3057%u3001%u6307%u5b9a%u30d5%u30a9%u30fc%u30de%u30c3%u30c8%u306b%u5909%u63db%u3059%u308b%u81ea%u52d5%u5316%u30b5%u30fc%u30d3%u30b9%u3067%u3059%u3002%u753b%u50cf%u3068%u753b%u50cf%u3001%u753b%u50cf%u3068%u6587%u5b57%u306e%u91cd%u306a%u308a%u306b%u3088%u308b%u30c8%u30ea%u30df%u30f3%u30b0%u3084%u30de%u30b9%u30ad%u30f3%u30b0%u304c%u3042%u308b%u5834%u5408%u3067%u3082%u81ea%u52d5%u3067%u62bd%u51fa%u3057%u3001%u753b%u50cf%u5316%u3057%u307e%u3059%u3002%u307e%u305f%u8a2d%u554f%u306e%u30c6%u30ad%u30b9%u30c8%u306f%u3001%u753b%u50cf%u5316%u3067%u3082%u3001%u30c6%u30ad%u30b9%u30c8%u62bd%u51fa%u3067%u3082%u3001HTML%u306e%u30bf%u30b0%u3092%u4ed8%u3051%u3066%u306e%u3054%u7d0d%u54c1%u3067%u3082%u3001%u3054%u8981%u671b%u306b%u5408%u308f%u305b%u305f%u5bfe%u5fdc%u304c%u53ef%u80fd%u3067%u3059%u3002%u90e8%u6750%u4f5c%u6210%u30b5%u30fc%u30d3%u30b9%u8a2d%u554f%u3068%u753b%u50cf%u305d%u308c%u305e%u308c%u3092%u5207%u308a%u51fa%u3057%u3001%u6307%u5b9a%u30d5%u30a1%u30a4%u30eb%u5f62%u5f0f%u306b%u4fdd%u5b58HTMLJPGPNGTXT08 %u30b3%u30f3%u30c6%u30f3%u30c4%u5236%u4f5c%u30b5%u30fc%u30d3%u30b9%u306e%u3054%u6848%u5185 %uff24%uff34%uff30%u5236%u4f5c%u30b5%u30fc%u30d3%u30b9 %u5b66%u7fd2%u6559%u6750 %u90e8%u6750%u4f5c%u6210%u30b5%u30fc%u30d3%u30b9 %u5236%u4f5c%u652f%u63f4%u30b7%u30b9%u30c6%u30e0%uff65%u30bd%u30d5%u30c8%u30a6%u30a7%u30a2